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Abstract
The constant improvement of computing capability and
network connectivity on embedded devices has enhanced
the development of ubiquitous systems and the Internet of
Things. Meanwhile, the Semantic technologies are the key
enabler for such developments. There have been evidences
of the limitations of centralised paradigm when the num-
ber of devices is explored [9, 7]. Thus, distribute semantic
data processing locally on devices is emergence. In this pa-
per, we firstly address the challenges while process Linked
Data on embedded devices. Next, we propose an approach
of adapting database management that scales such process-
ing.

1. Introduction
Pervasive computing and the Internet of Things are fac-

ing the challenges on representing, integrating and reason-
ing on sensors’ data. Linked Data provides a promising so-
lution to these difficulties. RDF is a well established data
model to describe the semantics of real data [2]. As well as
allowing a flexible way of integrating heterogeneous data,
and RDF ontology-based context description enables better
reasoning and a better sharing contextual information [8].

Semantic processing can be applied remotely and de-
vices can act as an interface to semantic data without hav-
ing to handle it directly. Executing the data processing tasks
locally on embedded devices might require much more ef-
forts in optimising the computations or in handling limited
resources. However, devices can be self-contained and be
able to operate in different environments. Furthermore, data
transmission costs can be dramatically reduced as it does
not require the transfer of data from a device to a server.
Working independently from a remote server also avoids
the requirement for devices to maintain a frequent connec-
tion. Thus, the risks caused by intermittent connectivity can
be reduced. As device data is not stored and processed on
a remote server, the privacy and security concern is also re-
duced. Finally, by distributing that computation among a
large number of existing devices, a greater computational
scale can be achieved.

In this paper, we address the performance issues that ex-
isting RDF frameworks suffer while running on embedded
devices. To overcome these issues, we then propose an ap-
proach of using database management techniques.

2. Research Objectives
Embedded devices are memory-constrained. If main

memory is used without awareness of the limitation, em-
bedded systems face high risk of crashing due to out-of-
memory. The existing implementations, such as Sesame or

Jena, tend to use GBs main memory as high speed buffer for
data processing. Our experiments show that Sesame, Jena
and its ported version for AndoJena suffer in scalability is-
sues due the memory limitation of devices.

Since memory is limited on embedded devices, and
out-of-memory errors crash applications, data may be fre-
quently written and read from secondary storage. Embed-
ded devices use flash memory as secondary storage. Data
structures and indexing schemes for traditional magnetic
disk work inefficiently on flash-based storage due to the dif-
ferences in physical data management between these two
types of memory medium [1, 5]. As in the initial version
of RDF on the go [6], Berkeley DB could adapt to the low
memory environment, however, it writes and read RDF data
very slowly. Hence, The second objective is how RDF data
can be organised so that it may be efficiently accessed on
flash-based storage of embedded devices. To the best of our
knowledge, this question currently has no attention.
3. Approach

In this section, we propose our approach to overcome the
issues that were addressed in previous section. To reduce
memory consumption of RDF data, we apply RDF encod-
ing approach. In flash memory, bits are organised as fixed
size blocks. The I/O unit on flash-based storage is block
based. The size of I/O equals to the block size of flash
memory. Flash memory have no mechanism seek latency.
However, flash memory suffers erase-before-write limita-
tion that causes its poor performance with random writes.
Therefore, we introduce an alternative physical organisa-
tion for RDF data called the Two-layers indexing that could
reduce the number of random writes. Finally, we introduce
resilient buffer manager that could adapt to availability of
memory.
3.1 RDF Encoding

RDF encoding is a compression technique that is com-
monly used in many triple stores[10, 4]. An Encoder, a
Decoder along with a Dictionary are responsible for com-
pressing and decompressing RDF nodes. When most of the
operations of RDF nodes, such as matching during a query
execution, can be performed in the compressed form. Only
encoded RDF Nodes are cached in main while their string
representations are kept on flash storage. When it is needed,
the Decoder will return the original form.
3.2 Physical Organisation

In a file, RDF triples are encoded and organised into
three components tuples. The tuples are sorted lexicograph-
ically and compressed into fixed-size blocks. The size of
block equal flash devices erase block. A spare index holds
the positions of data blocks is small enough to fit into main



memory. Each block is identified by its lowest tuple and its
highest tuple. Free space is always left in each data block
to insert new tuples. Thus, it only has to update the modi-
fied data block instead of resorting the whole file that may
require many rewriting operations. When a block is split
for new space, the updated part will be copied into a new
block and is assigned as the last data block of the file. The
old block remains the same, but the sparse index is updated
with its new lowest tuple and highest tuple. This block is
updated later when a new tuple arrives.

3.3 Buffer Management
Data is always read and written from flash-based storage

in fixed size memory blocks. Hence, the buffer should or-
ganise data in memory blocks of the same size. To avoid
out-of-memory errors, the buffer manager writes data to
storage to claim free memory. The storage I/O is much
slower than other operations in the system. Therefore, the
number of reads and writes must be reduced as much as pos-
sible. In buffer, a score is assigned to each block to detect
its access frequency. From the score, the buffer manager
chooses and writes the block with the lowest score to the
storage and keeps the more active block in main memory.

4 Preliminary Results
To test our approach, we compare the scalability of our

system to other systems that could run on the same de-
vices. The scalability means that the size of RDF dataset
that the system can support and answer queries in an ac-
ceptable delay. We use generated data and SPARQL queries
from BSBM benchmark [3] to test the RDF storage and the
SPARQL processor. On a BeagleBone Black, we compare
our implementation with Jena and Sesame. On an Android
tablet Nexus 7, we compare our RDF-OTG with AndroJena
and RDF-BDB, which uses Berkeley DB for RDF storage.

Figure 1: Update Throughput
The throughput tests results are illustrated in Figure 1.

On the Beagle Bone, the native store of Sesame and Je-
naTDB can load 500k triples and 600k triples. The tests
stopped due to out-of-memory errors. Our engine, RDF 3B,
can insert more than 1 million triples with higher through-
put. On the tablet, our system RDF-OTG also shows greater
efficiency in inserting rate and scale. The directly ported
version of Jena crashed after inserting 200k triples. RDF-
BDB does not run out of memory, however, its throughput is
very low (10-20 Ops). Hence, the B++ Tree index structure
of Berkeley DB is not sufficient on flash memory.

Figure 2: Query Response Time

The figure 3 reports the response time of SPARQL
queries on respectively 500k triples on the BeagleBone and
200k on the tablet. Our framework can answer all SPARQL
queries less than 4 seconds on the BeagleBone Black and 16
seconds on the tablet. However, as we reuse the SPARQL
processor of Jena, our implementations perform slightly
better than Jena because it can access RDF data on flash
faster. The memory profiling shows that for the same size
of data, our implementation consume one-third memory as
Jena does and a half as much as Sesame requires.

5 Conclusion
In this paper, we presented an approach for improving

performance of Linked Data processing on embedded de-
vices. Our initial results promisingly show that database op-
timisations can support better scalability and performance
for RDF data on embedded devices.
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